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CS1660: Announcements

u Course updates

u Please make sure you complete Homework 0 and Project 0

u Please make sure you have access to Ed Discussion and Gradescope

u Project 1 “Cryptography” is going out today; due in 3 weeks
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Last class

u Introduction to Computer Security

u Motivation

u Basic security concepts

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad
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Today

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad

u Encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography
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3.0 Symmetric-key 
encryption
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m

Problem setting: Secret communication

Two parties wish to communicate over a channel
u Alice (sender/source) wants to send a message m to Bob (recipient/destination)

Underlying channel is unprotected
u Eve (attacker/adversary) can eavesdrop any sent messages

u e.g., packet sniffing over networked or wireless communications
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Solution concept: Symmetric-key encryption

Main idea
u secretly transform message so that it is unintelligible while in transit

u Alice encrypts her message m to ciphertext c, which is sent instead of plaintext m

u Bob decrypts received message c to original message m

u Eve can intercept c but “cannot learn” m from c

u Alice and Bob share a secret key k that is used for both message transformations
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Security tool: Symmetric-key encryption scheme
Abstract cryptographic primitive, a.k.a. cipher, defined by
u a message space M; and
u a triplet of algorithms (Gen, Enc, Dec)

u Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
u Gen outputs a uniformly random key k (from some key space K)

8

Eve

Alice BobEnc cm Dec m’c

M: set of possible 
messages

Gen

k k



Desired properties for symmetric-key encryption scheme
By design, any symmetric-key encryption scheme should satisfy the following
u efficiency:  key generation & message transformations “are fast”

u correctness: for all m and k, it holds that Dec( Enc(m, k) , k) = m

u security:  one “cannot learn” plaintext m from ciphertext c
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(Auguste) Kerckhoff’s principle (1883)

“The cipher method must not be required to be secret, and it must 
be able to fall into the hands of the enemy without inconvenience.”

Reasoning

u due to security & correctness, Alice & Bob must share some secret info

u if no shared key captures this secret info, it must be captured by Enc, Dec

u but keeping Enc, Dec secret is problematic

u harder to keep secret an algorithm than a short key (e.g., after user revocation)

u harder to change an algorithm than a short key (e.g., after secret info is exposed)

u riskier to rely on custom/ad-hoc schemes than publicly scrutinized/standardized ones
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(Auguste) Kerckhoff’s principle (1883)

“The cipher method must not be required to be secret, and it must 
be able to fall into the hands of the enemy without inconvenience.”

General good-hygiene principle (beyond encryption)

u Security relies solely on keeping secret keys

u System architecture and algorithms are publicly available

u Claude Shannon (1949): “one ought to design systems under the assumption that the 
enemy will immediately gain full familiarity with them”

u Opposite of “security by obscurity” practice
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Symmetric-key encryption

u Also referred to as simply “symmetric encryption”
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Symmetric Vs. Asymmetric encryption
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Main application areas

Secure communication

u encrypt messages sent among parties
u assumption

u Alice and Bob securely generate, 
distribute & store shared key k

u attacker does not learn key k

Secure storage

u encrypt files outsourced to the cloud
u assumption

u Alice securely generates & stores key k

u attacker does not learn key k
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Brute-force attack
Generic attack
u given a captured ciphertext c and known key space K, Dec

u strategy is an exhaustive search

u for all possible keys k in K

u determine if Dec (c,k) is a likely plaintext m

u requires some knowledge on the message space M

u i.e., structure of the plaintext (e.g., PDF file or email message)

Countermeasure

u key should be a random value from a sufficiently large key space K 
to make exhaustive search attacks infeasible
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3.1 Classical ciphers
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Substitution ciphers

Large class of ciphers: each letter is uniquely replaced by another
u key is a (random) permutation over the alphabet characters

u there are 26! ≈ 4×1026 possible substitution ciphers

u huge key space (larger than the # of starts in universe)

u e.g., one popular substitution “cipher” 
for some Internet posts is ROT13

u historically

u all classical ciphers are of this type
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Classical ciphers – general structure

Class of ciphers based on letter substitution

u message space M is “valid words” from a given alphabet

u e.g., English text without spaces, punctuation or numerals

u characters can be represented as numbers in [0:25]

u based on a predetermined 1-1 character mapping

u map each (plaintext) character into another unique (ciphertext) character

u typically defined as a “shift” of each plaintext character by a fixed per alphabet character 
number of positions in a canonical ordering of the characters in the alphabet

u encryption: character shifting occurs with “wrap-around” (using mod 26 addition)

u decryption: undo shifting of characters with “wrap-around” (using mod 26 subtraction)
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Limitations of substitution ciphers

Generally, susceptible to frequency (and other statistical) analysis

u letters in a natural language, like English, are not uniformly distributed

u cryptographic attacks against substitution ciphers are possible 

u e.g., by exploiting knowledge of letter frequencies, including pairs and triples

u most frequent letters in English: e, t, o, a, n, i, ... 

u most frequent digrams: th, in, er, re, an, ... 

u most frequent trigrams: the, ing, and, ion, ...

u Attack framework first described in a 9th century book by al-Kindi
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Letter frequency in (sufficiently large) English text
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Classical ciphers – examples

(Julius) Caesar's cipher

u shift each character in the message by 3 positions 

u I.e., 3 instead of 13 positions as in ROT-13

u cryptanalysis

u no secret key is used – based on “security by obscurity”

u thus the code is trivially insecure once knows Enc (or Dec)
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Classical ciphers – examples (II)

Shift cipher

u keyed extension of Caesar’s cipher

u randomly set key k in [0:25]

u shift each character in the message by k positions

u cryptanalysis

u brute-force attacks are effective given that

u key space is small (26 possibilities or, actually, 25 as 0 should be avoided)
u message space M is restricted to “valid words”

u e.g., corresponding to valid English text
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Alternative attack against “shift cipher”

u brute-force attack + inspection if English “make sense” is quite manual

u a better automated attack is based on statistics

u if character i (in [0:25]) in the alphabet has frequency pi (in [0..1]), then

u from known statistics, we know that Σi pi
2 ≈ 0.065, so

u since character i (in plaintext) is mapped to character i + k (in ciphertext)

u if Lj = Σi pi qi+j, then we expect that Lk ≈ 0.065 (qi: frequency of character i in ciphertext)

u thus, a brute-force attack can test all possible keys w.r.t. the above criterion

u the search space remains the same

u yet, the condition to finish the search becomes much simpler: Choose j so that Lj ≈ 0.065
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Classical ciphers – examples (III)

Mono-alphabetic substitution cipher

u generalization of shift cipher

u key space defines permutation on alphabet

u use a 1-1 mapping between characters in the alphabet to produce ciphertext

u i.e., shift each distinct character in the plaintext (by some appropriate number of 
positions defined by the key) to get a distinct character in the ciphertext

u cryptanalysis

u key space is large (of the order of 26! or ~288) but cipher is vulnerable to attacks

u character mapping is fixed by key so plaintext & ciphertext exhibit same statistics
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3.2 Perfect secrecy
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Security tool: Symmetric-key encryption scheme
Abstract cryptographic primitive, a.k.a. cipher, defined by
u a message space M; and
u a triplet of algorithms (Gen, Enc, Dec)

u Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
u Gen outputs a uniformly random key k (from some key space K)
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Probabilistic formulation

Desired properties

u Efficiency

u Correctness

u Security

Our setting so far is a random experiment

u a message m is chosen according to DM

u a key k is chosen according to DK

u Enck(m) → c is given to the adversary
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Perfect correctness

For any k ∈ K , m ∈ M and any ciphertext c output of Enck(m),

it holds that

Pr[ Deck (c) = m ] = 1
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Perfect security

Defining security for an encryption scheme is not trivial

u what we mean by “Eve “cannot learn” m (from c)” ?
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Attempt 1: Protect the key k!

u Security means that

the adversary should not be able to compute the key k

u Intuition

u it’d better be the case that the key is protected!... 

u Problem

u this definition fails to exclude clearly insecure schemes

u e.g., the key is never used, such as when Enck(m) := m
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Attempt 2: Don’t learn m!

u Security means that

the adversary should not be able to compute the message m

u Intuition

u it’d better be the case that the message m is not learned... 

u Problem

u this definition fails to exclude clearly undesirable schemes

u e.g., those that protect m partially, i.e., they reveal the least significant bit of m
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Attempt 3: Learn nothing!

u Security means that

the adversary should not be able to learn any information about m

u Intuition

u it seems close to what we should aim for perfect secrecy… 

u Problem

u this definition ignores the adversary’s prior knowledge on M

u e.g., distribution DM may be known or estimated

u m is a valid text message, or one of “attack”, “no attack” is to be sent
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Attempt 4: Learn nothing more!

u Security means that

the adversary should not be able to learn any additional information on m

u How can we formalize this?
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Two equivalent views of perfect secrecy

a posteriori = a priori

For every DM, m ∈M and c ∈ C, for 
which Pr [C = c ] > 0, it holds that

Pr[ M = m | C = c ] = Pr[ M = m ]

C is independent of M

For every m, m’ ∈M and c ∈ C, 
it holds that

Pr[ EncK(m) = c ] = Pr[ EncK(m’) = c ]
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Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M, 
is perfectly secret if for every DM, every message m ∈ M and every ciphertext c ∈ C  
for which Pr [C = c ] > 0, it holds that

Pr[ M = m | C = c ] = Pr [ M = m ]
u Intuitively

u the a posteriori probability that any given message m was actually sent
is the same as the a priori probability that m would have been sent

u observing the ciphertext reveals nothing (new) about the underlying plaintext
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Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M, is 
perfectly secret if for every messages m, m’ ∈ M and every c ∈ C, it holds that

Pr[ EncK(m) = c ] = Pr [ EncK(m’) = c ]
u Intuitively

u the probability distribution DC does not depend on the plaintext

u i.e., M and C are independent random variables

u the ciphertext contains “no information” about the plaintext

u “impossible to distinguish” an encryption of m from an encryption of m’
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3.3 The One-Time Pad
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The one-time pad: A perfect cipher

A type of “substitution” cipher that is “absolutely unbreakable”
u invented in 1917 Gilbert Vernam and Joseph Mauborgne

u “substitution” cipher

u individually replace plaintext characters with shifted ciphertext characters

u independently shift each message character in a random manner

u to encrypt a plaintext of length n, use n uniformly random keys k1, . . . , kn

u “absolutely unbreakable”

u perfectly secure (when used correctly)

u based on message-symbol specific independently random shifts
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The one-time pad (OTP) cipher

Fix n to be any positive integer; set M = C = K = {0,1}n

u Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
u Gen → {0,1}n

u Enc: given a key and a message of equal lengths, compute the bit-wise XOR
u Enc(k, m) = Enck(m) → k ⊕ m     (i.e., mask the message with the key)

u Dec: compute the bit-wise XOR of the key and the ciphertext
u Dec(k, c) = Deck(c) := k ⊕ c

u Correctness
u trivially, k ⊕ c = k ⊕ k ⊕ m = 0 ⊕ m = m
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OTP is perfectly secure (using Definition 2)

For all n-bit long messages m1 and m2 and ciphertexts c, it holds that

Pr[ EK(m1) = c ]   =    Pr[ EK(m2) = c],

where probabilities are measured over the possible keys chosen by Gen.

Proof

u events “EncK(m1) = c”, “m1 ⊕ K = c” and “K = m1 ⊕ c” are equal-probable
u K is chosen at random, irrespectively of m1 and m2, with probability 2-n

u thus, the ciphertext does not reveal anything about the plaintext
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OTP characteristics

A “substitution” cipher

u encrypt an n-symbol m using n uniformly random “shift keys” k1, k2, . . . , kn

2 equivalent views

u K = M = C {0,1}n or G, (G,+) is a group

u “shift” method     bit-wise XOR (m ⊕ k)     addition/subtraction (m +/- k) 

Perfect secrecy

u since each shift is random, every ciphertext is equally likely for any plaintext

Limitations (on efficiency)

u “shift keys” (1) are as long as messages & (2) can be used only once
41
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Perfect, but impractical

Despite its perfect security, OTP  has 2 notable weaknesses
u the key has to be as long as the plaintext

u limited applicability
u key-management problem

u the key cannot be reused (thus, the “one-time” pad)

u if reused, perfect security is not satisfied

u e.g., reusing a key once, leaks the XOR of two plaintext messages

u this type of leakage can be devastating against secrecy 

These weakness are detrimental to secure communication
u securely distributing fresh long keys is as hard as securely exchanging messages…
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Importance of OTP weaknesses

Inherent trade-off between efficiency/practicality Vs. perfect secrecy
u historically, OTP has been used efficiently & insecurely

u repeated use of one-time pads compromised 
communications during the cold war

u NSA decrypted Soviet messages that 
were transmitted in the 1940s

u that was possible because the Soviets 
reused the keys in the one-time pad scheme

u modern approaches resemble OTP encryption

u efficiency via use of pseudorandom OTP keys

u “almost perfect” secrecy
43



3.4 Symmetric encryption, 
revisited: OTP with 
pseudorandomness
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Big picture

Secret communication

u We learned what it means for a cipher to be perfectly secure

u We learned that the simple OTP cipher achieves this property

u XOR (mask) message (once) with the secret key (random pad)

u …but it cannot be used in practice!

u We learned how we can fix this problem

u just use OTP with a freshly-generated “random looking” pads

u mask each message once with a pseudorandom pad
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Big picture (cont.)

Secret communication

u But there is no free lunch…

u if we mask each message once with a pseudorandom pad,
we must lose perfect secrecy!

u because “random looking” pads are not random…

u But not perfect won’t be imperfect – it will be close to perfect

u for all practical purposes

u “random looking” pads will be as random as truly random ones
u OTP + pseudo-randomness will be as secure as (standard) OTP 
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Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random
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Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol 
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of 
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols 
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)
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3.5 Computational 
security
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The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?
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Our approach: Relax perfectness for cipher security 

Initial model

u Perfect secrecy (or security) guarantees that 

u the ciphertext leaks (absolutely) no extra information about the plaintext 

u (unconditionally) to adversaries of unlimited computational power

Refined model

u Computational security guarantees a relaxed notion of security, namely that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power
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Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

u (1) the scheme can be broken only with a tiny likelihood

u (2) by adversaries with bounded computational power

In contrast to perfect or information-theoretic or unconditional security

u which is typically harder, more costly or, often impossible, to achieve
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Computational security (cont.)

General concept in Cryptography

u de facto model for security in most settings

u based on an underlying hardness (computational) assumption

u integral part of modern cryptography

u still allowing for rigorous mathematical proof of security

u Asymptotic description of results

“A scheme is computationally secure if 
any efficient attacker succeeds in breaking it

with at most negligible probability”
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Computational security (cont.)

General concept in Cryptography

u entails two relaxations

u security is guaranteed against efficient adversaries

u if an attacker invests in sufficiently large resources, it may break security

u goal: make required resources larger than those available to any realistic attacker!

u security is guaranteed in a probabilistic manner

u with some small probability, an attacker may break security

u goal: make attack probability sufficiently small so that it can be practically ignored!
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Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount 

u e.g., with prob. 2-128  (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128     (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)
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Towards a rigorous definition of computational security

Concrete approach

u “A scheme is (t,ε)-secure if any attacker A, running for time at most t, succeeds in 
breaking the scheme with probability at most ε”

Asymptotic approach

u “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with 
at most negligible probability”
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Examples
u almost optimal security guarantees

u if key length n, the number of possible keys is 2n

u attacker running for time t succeeds w/ prob. at most ~ t/2n (brute-force attack)

u if n = 60, security is enough for attackers running a desktop computer

u 4 GHz (4x109 cycles/sec), checking all 260 keys require about 9 years

u if n = 80, a supercomputer would still need ~2 years

u today’s recommended security parameter is at least n = 128

u large difference between 280 and 2128; e.g., #seconds since Big Bang is ~258

u a once-in-100-years event corresponds to probability 2-30 of happening at a particular sec

u if within 1 year of computation attack is successful w/ prob. 1/260

then it is more likely that Alice and Bob are hit by lighting
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Examples: Big Numbers in the real world

u Odds for all 5 numbers + Powerball 

u  292x106 => 238

u The Age of the Universe in Seconds 

u 4.3×1017 => 258

u  # of cycles in a century of a 4 GHz CPU => 264

u  # of arrangements of a Rubik's cube 4.3×1019 => 265

u  Atoms in the Earth 1.33x1050 => 2166

u  Electrons in the universe 1080 => 2266
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3.6 Introduction to 
modern cryptography
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Cryptography / cryptology

u Etymology

u two parts:   “crypto” + “graphy”  / “logy”

u original meaning:  κρυπτός +  γράφω    /  λόγος      (in Greek)

u English translation:  secret   +    write      /  speech, logic

u meaning:   secret writing           /  the study of secrets

u Historically developed/studied for secrecy in communications

u i.e., message encryption in the symmetric-key setting

u main application area: use by military and governments
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Classical cryptography Vs. modern cryptography

antiquity – ~70s

u “the art or writing and solving codes”

u approach

u ad-hoc design
u trial & error methods
u empirically evaluated

~80s – today

u “the study of mathematical techniques 
for securing digital information, systems, 
and distributed computations again 
adversarial attacks”

u approach
u systematic development & analysis
u formal notions of security / adversary
u rigorous proofs of security (or insecurity)
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Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

“the art of writing and solving codes”

u ad-hoc study
u vulnerabilities/insecurity of

u Caesar's cipher

u shift cipher

u mono-alphabetic substitution cipher

~80s – today

“the study of mathematical techniques for 
securing information, systems, and distributed 
computations against adversarial attacks”

u rigorous study
u problem statement: secret communication over 

insecure channel
u abstract solution concept: symmetric encryption, 

Kerckhoff’s principle, perfect secrecy
u concrete solution & analysis: OTP cipher, proof of 

security

63



Example: Differences of specific ciphers

Caesar’s/shift/mono-alphabetic cipher

u substitution ciphers
u Caesar's cipher

u shift is always 3

u shift cipher

u shift is unknown but
the same for all characters

u mono-alphabetic substitution/Vigènere cipher
u shift is unknown but 

the same for all/many character occurrences 

The one-time pad

u also, a substitution cipher
u shift is unknown and 

independent for each character occurrence
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Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions  (what it means for a crypto primitive to be “secure”?) 

u B) precise assumptions  (which forms of attacks are allowed – and which aren’t?)

u C) provable security   (why a candidate instantiation is indeed secure – or not)?
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Recall: Secure against what?

u “Security” has no meaning per se…

u The security of a system, application, or protocol is always relative to

u A set of desired properties

u An adversary with specific capabilities

u Recall: Difficult to define general rules for security

u Adapt best practices, heuristics based on the system we are considering!
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Example: Physical safes
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TL-15 ($3,000)
15 minutes with 
common tools

TL-30 ($4,500)
30 minutes with 
common tools 

TRTL-30 ($10,000)
30 minutes with 

common tools and a 
cutting torch

TXTL-60 (>$50,000)
60 minutes with 
common tools, a 

cutting torch, and up 
to 4 oz of explosives



The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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A) Formal definitions

abstract but rigorous description of security problem 

u computing setting        (to be considered)

u involved parties, communication model, core functionality

u underlying cryptographic scheme      (to be designed)

u e.g., symmetric-key encryption scheme

u desired properties         (to be achieved) 

u security related

u non-security related

u e.g., correctness, efficiency, etc.
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Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems
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Example: Problem at hand

abstract but rigorous description of security problem (to be solved)
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secret communication

Insecure channel



Example: Formal definitions (1)

u computing setting        (to be considered)

u e.g., involved parties, communication model, core functionality
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BobAlice m

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

Alice/Bob may transform the transmitted/received message and share info



Example: Formal definitions (2)

u underlying cryptographic scheme     (to be designed)

 symmetric-key encryption scheme

u Alice and Bob share and use a key k

u Alice encrypts plaintext m to ciphertext c and sends c instead of m

u Bob decrypts received c to get a message m’
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Example: Formal definitions (3)

u desired properties         (to be achieved) 

u security (informal)

u correctness (informal)
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Eve “cannot learn” m (from c)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m



Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K   (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C 

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C 

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M      or ⊥
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Example: Formal definitions (4)
Perfect correctness

u for any k ∈ K , m ∈ M and any ciphertext c output of Enck(m), it holds that

Pr[ Deck (c) = m ] = 1
Perfect security (or information-theoretic security)

u the adversary should be able to learn no additional information on m
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Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view 
remains 

the same!
random 

experiment
DM → m
DK → k

Enck(m) → c



Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for 
which Pr [C = c ] > 0, it holds that

Pr[ M = m | C = c ] = Pr[ M = m ]

2) C is independent of M

For every m, m’ ∈M and c ∈ C, 
it holds that

Pr[ EncK(m) = c ] = Pr[ EncK(m’) = c ]
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3) indistinguishability

For every A, it holds that
Pr[ b’ = b ] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|



From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext 

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)

u to adversaries with bounded computational power (e.g., attacker invests 200ys) 

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)
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Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary 

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1) 

     non-negligibly better than guessing
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3) indistinguishability

For every A, it holds that
Pr[ b’ = b ] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|



The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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B) Why precise assumptions are important?

u basis for proofs of security   

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
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Example: Precise assumptions (1)

u adversary
u type of attacks – a.k.a. threat model

u capabilities (e.g., a priori knowledge, access to information, party corruptions)
u limitations (e.g., bounded memory, passive Vs. active)
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Eve

Alice Bobm

eavesdropping

Eve may know the a priori distribution of messages sent by Alice

Eve doesn’t know/learn the secret k (shared by Alice and Bob)

cencrypt

k k

decrypt mc



Example: Precise assumptions (2)

u computational assumptions (about hardness of certain tasks)
u e.g., factoring of large composite numbers is hard
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Eve

Alice Bobm

no computational assumptions 
– a.k.a. perfect secrecy (or information-theoretic security)

cencrypt

k k

decrypt mc



Example: Precise assumptions (3)

u computing setting
u system set up, initial state, key distribution, randomness…

u means of communication (e.g., channels, rounds, messages…)
u timing assumptions (e.g., synchronicity, epochs, …)
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Eve

Alice Bobm

key k is generated 
randomly using 
the uniform 
distribution

cencrypt

k k

decrypt mc

key k is securely distributed to and securely stored at Alice and Bob 

one message m is only communicated
(for simplicity in our initial security definition)

k, m are chosen independently



Possible eavesdropping attacks (I)
An attacker may possess a

u (a) collection of ciphertexts
u ciphertext only attack

u this will be the default attack type 
when we will next define the 
concept of perfect security
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Hi, Bob.
Don’t invite 

Eve to the 
party! 

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

(a)



Possible eavesdropping attacks (II)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack
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Hi, Bob.
Don’t invite 

Eve to the 
party! 

Love, Alice

plaintext ciphertext

key

(b)

Eve

Encryption
Algorithm



Possible eavesdropping attacks (III)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs 
      for plaintexts selected by the attacker 

u chosen plaintext attack
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ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

(c)

Eve

Encryption
Algorithm



Possible eavesdropping attacks (IV)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs 
      for plaintexts selected by the attacker 

u chosen plaintext attack

u (d) collection of plaintext/ciphertext pairs 
      for (plaintexts and) ciphertexts selected 
      by the attacker 

u chosen ciphertext attack
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IJCGA, CAN DO 
HIFFA GOT 
TIME.

plaintext ciphertext

key

001101
110111

(d)

Eve

Decryption
Algorithm



Main security properties against eavesdropping
“plain” security 

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack
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Hi, Bob.
Don’t invite 
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Encryption
Algorithm
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ATΠ

Game-based computational EAV-security
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m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing



ATΠ

Game-based computational EAV-security
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m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

Alternatively: 
“is semantically secure”

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing



ATΠ

Game-based computational CPA-security
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m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with 
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice 



On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies probabilistic encryption – can you see why?

u EAV-security for multiple messages implies probabilistic encryption
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The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…
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C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a 
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack
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Why provable security is important?

Typical performance

u in some areas of computer science 
formal proofs may not be essential
u simulate hard-to-analyze algorithm to 

experimentally study 
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design 
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little 
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means 

in its power to break a scheme
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