
CS1660: Intro to Computer Systems Security
Spring 2026

Lecture 3: Confidentiality
Instructor: Nikos Triandopoulos

January 29, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/
https://brown-csci1660.github.io/
https://brown-csci1660.github.io/

CS1660: Announcements

u Course updates

u Please make sure you complete Homework 0 and Project 0

u Please make sure you have access to Ed Discussion and Gradescope

u Project 1 “Cryptography” is going out today; due in 3 weeks

2

Last class

u Introduction to Computer Security

u Motivation

u Basic security concepts

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad

3

Completed

Current

Upcoming

Today

u Cryptography

u Secret communication

u Symmetric-key encryption & classical ciphers

u Perfect secrecy & the One-Time Pad

u Encryption in practice

u Computational security, pseudo-randomness
u Stream & block ciphers, modes of operations for encryption, DES & AES
u Introduction to modern cryptography

4

Confidentiality

Intro to Crypto

3.0 Symmetric-key
encryption

5

m

Problem setting: Secret communication

Two parties wish to communicate over a channel
u Alice (sender/source) wants to send a message m to Bob (recipient/destination)

Underlying channel is unprotected
u Eve (attacker/adversary) can eavesdrop any sent messages

u e.g., packet sniffing over networked or wireless communications

6

Eve

Alice Bobm m

Solution concept: Symmetric-key encryption

Main idea
u secretly transform message so that it is unintelligible while in transit

u Alice encrypts her message m to ciphertext c, which is sent instead of plaintext m

u Bob decrypts received message c to original message m

u Eve can intercept c but “cannot learn” m from c

u Alice and Bob share a secret key k that is used for both message transformations

7

Eve

Alice Bobm cencrypt

k k

decrypt mc

Security tool: Symmetric-key encryption scheme
Abstract cryptographic primitive, a.k.a. cipher, defined by
u a message space M; and
u a triplet of algorithms (Gen, Enc, Dec)

u Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
u Gen outputs a uniformly random key k (from some key space K)

8

Eve

Alice BobEnc cm Dec m’c

M: set of possible
messages

Gen

k k

Desired properties for symmetric-key encryption scheme
By design, any symmetric-key encryption scheme should satisfy the following
u efficiency: key generation & message transformations “are fast”

u correctness: for all m and k, it holds that Dec(Enc(m, k) , k) = m

u security: one “cannot learn” plaintext m from ciphertext c

9

Eve

Alice BobEnc cm Dec mc

M: set of possible
messages

Gen

k k

(Auguste) Kerckhoff’s principle (1883)

“The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.”

Reasoning

u due to security & correctness, Alice & Bob must share some secret info

u if no shared key captures this secret info, it must be captured by Enc, Dec

u but keeping Enc, Dec secret is problematic

u harder to keep secret an algorithm than a short key (e.g., after user revocation)

u harder to change an algorithm than a short key (e.g., after secret info is exposed)

u riskier to rely on custom/ad-hoc schemes than publicly scrutinized/standardized ones

10

(Auguste) Kerckhoff’s principle (1883)

“The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.”

General good-hygiene principle (beyond encryption)

u Security relies solely on keeping secret keys

u System architecture and algorithms are publicly available

u Claude Shannon (1949): “one ought to design systems under the assumption that the
enemy will immediately gain full familiarity with them”

u Opposite of “security by obscurity” practice

11

Symmetric-key encryption

u Also referred to as simply “symmetric encryption”

12

Key
(Optional)

Original
Plaintext

Plaintext Ciphertext

Key
(Optional)

Encryption Decryption

Symmetric Vs. Asymmetric encryption

13

Encryption Decryption Original
PlaintextPlaintext Ciphertext

(a) Symmetric Cryptosystem

Decryption
Key

Encryption Decryption Original
PlaintextPlaintext Ciphertext

Encryption
Key

(b) Asymmetric Cryptosystem

Key

Main application areas

Secure communication

u encrypt messages sent among parties
u assumption

u Alice and Bob securely generate,
distribute & store shared key k

u attacker does not learn key k

Secure storage

u encrypt files outsourced to the cloud
u assumption

u Alice securely generates & stores key k

u attacker does not learn key k

14

Eve

Alice Bob

k k

messages

Eve

Alice

k

files

Brute-force attack
Generic attack
u given a captured ciphertext c and known key space K, Dec

u strategy is an exhaustive search

u for all possible keys k in K

u determine if Dec (c,k) is a likely plaintext m

u requires some knowledge on the message space M

u i.e., structure of the plaintext (e.g., PDF file or email message)

Countermeasure

u key should be a random value from a sufficiently large key space K
to make exhaustive search attacks infeasible

15

3.1 Classical ciphers

16

Substitution ciphers

Large class of ciphers: each letter is uniquely replaced by another
u key is a (random) permutation over the alphabet characters

u there are 26! ≈ 4×1026 possible substitution ciphers

u huge key space (larger than the # of starts in universe)

u e.g., one popular substitution “cipher”
for some Internet posts is ROT13

u historically

u all classical ciphers are of this type

17

Classical ciphers – general structure

Class of ciphers based on letter substitution

u message space M is “valid words” from a given alphabet

u e.g., English text without spaces, punctuation or numerals

u characters can be represented as numbers in [0:25]

u based on a predetermined 1-1 character mapping

u map each (plaintext) character into another unique (ciphertext) character

u typically defined as a “shift” of each plaintext character by a fixed per alphabet character
number of positions in a canonical ordering of the characters in the alphabet

u encryption: character shifting occurs with “wrap-around” (using mod 26 addition)

u decryption: undo shifting of characters with “wrap-around” (using mod 26 subtraction)

18

Limitations of substitution ciphers

Generally, susceptible to frequency (and other statistical) analysis

u letters in a natural language, like English, are not uniformly distributed

u cryptographic attacks against substitution ciphers are possible

u e.g., by exploiting knowledge of letter frequencies, including pairs and triples

u most frequent letters in English: e, t, o, a, n, i, ...

u most frequent digrams: th, in, er, re, an, ...

u most frequent trigrams: the, ing, and, ion, ...

u Attack framework first described in a 9th century book by al-Kindi

19

Letter frequency in (sufficiently large) English text

20

Classical ciphers – examples

(Julius) Caesar's cipher

u shift each character in the message by 3 positions

u I.e., 3 instead of 13 positions as in ROT-13

u cryptanalysis

u no secret key is used – based on “security by obscurity”

u thus the code is trivially insecure once knows Enc (or Dec)

21

Classical ciphers – examples (II)

Shift cipher

u keyed extension of Caesar’s cipher

u randomly set key k in [0:25]

u shift each character in the message by k positions

u cryptanalysis

u brute-force attacks are effective given that

u key space is small (26 possibilities or, actually, 25 as 0 should be avoided)
u message space M is restricted to “valid words”

u e.g., corresponding to valid English text

22

Alternative attack against “shift cipher”

u brute-force attack + inspection if English “make sense” is quite manual

u a better automated attack is based on statistics

u if character i (in [0:25]) in the alphabet has frequency pi (in [0..1]), then

u from known statistics, we know that Σi pi
2 ≈ 0.065, so

u since character i (in plaintext) is mapped to character i + k (in ciphertext)

u if Lj = Σi pi qi+j, then we expect that Lk ≈ 0.065 (qi: frequency of character i in ciphertext)

u thus, a brute-force attack can test all possible keys w.r.t. the above criterion

u the search space remains the same

u yet, the condition to finish the search becomes much simpler: Choose j so that Lj ≈ 0.065

23

Classical ciphers – examples (III)

Mono-alphabetic substitution cipher

u generalization of shift cipher

u key space defines permutation on alphabet

u use a 1-1 mapping between characters in the alphabet to produce ciphertext

u i.e., shift each distinct character in the plaintext (by some appropriate number of
positions defined by the key) to get a distinct character in the ciphertext

u cryptanalysis

u key space is large (of the order of 26! or ~288) but cipher is vulnerable to attacks

u character mapping is fixed by key so plaintext & ciphertext exhibit same statistics

24

3.2 Perfect secrecy

25

Security tool: Symmetric-key encryption scheme
Abstract cryptographic primitive, a.k.a. cipher, defined by
u a message space M; and
u a triplet of algorithms (Gen, Enc, Dec)

u Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
u Gen outputs a uniformly random key k (from some key space K)

26

Eve

Alice BobEnc cm Dec m’c

M: set of possible
messages

Gen

k k

Probabilistic formulation

Desired properties

u Efficiency

u Correctness

u Security

Our setting so far is a random experiment

u a message m is chosen according to DM

u a key k is chosen according to DK

u Enck(m) → c is given to the adversary

27

Perfect correctness

For any k ∈ K , m ∈ M and any ciphertext c output of Enck(m),

it holds that

Pr[Deck (c) = m] = 1

28

Perfect security

Defining security for an encryption scheme is not trivial

u what we mean by “Eve “cannot learn” m (from c)” ?

29

Attempt 1: Protect the key k!

u Security means that

the adversary should not be able to compute the key k

u Intuition

u it’d better be the case that the key is protected!...

u Problem

u this definition fails to exclude clearly insecure schemes

u e.g., the key is never used, such as when Enck(m) := m

30

necessary condition

but not
sufficient condition!

Attempt 2: Don’t learn m!

u Security means that

the adversary should not be able to compute the message m

u Intuition

u it’d better be the case that the message m is not learned...

u Problem

u this definition fails to exclude clearly undesirable schemes

u e.g., those that protect m partially, i.e., they reveal the least significant bit of m

31

Attempt 3: Learn nothing!

u Security means that

the adversary should not be able to learn any information about m

u Intuition

u it seems close to what we should aim for perfect secrecy…

u Problem

u this definition ignores the adversary’s prior knowledge on M

u e.g., distribution DM may be known or estimated

u m is a valid text message, or one of “attack”, “no attack” is to be sent

32

Attempt 4: Learn nothing more!

u Security means that

the adversary should not be able to learn any additional information on m

u How can we formalize this?

33

Eve

Alice m

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

Enck(m) → c m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!

Two equivalent views of perfect secrecy

a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

34

Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!
random

experiment
DM → m = M
DK → k = K

Enck(m) → c = C

~

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M,
is perfectly secret if for every DM, every message m ∈ M and every ciphertext c ∈ C
for which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr [M = m]
u Intuitively

u the a posteriori probability that any given message m was actually sent
is the same as the a priori probability that m would have been sent

u observing the ciphertext reveals nothing (new) about the underlying plaintext

35

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M, is
perfectly secret if for every messages m, m’ ∈ M and every c ∈ C, it holds that

Pr[EncK(m) = c] = Pr [EncK(m’) = c]
u Intuitively

u the probability distribution DC does not depend on the plaintext

u i.e., M and C are independent random variables

u the ciphertext contains “no information” about the plaintext

u “impossible to distinguish” an encryption of m from an encryption of m’

36

3.3 The One-Time Pad

37

The one-time pad: A perfect cipher

A type of “substitution” cipher that is “absolutely unbreakable”
u invented in 1917 Gilbert Vernam and Joseph Mauborgne

u “substitution” cipher

u individually replace plaintext characters with shifted ciphertext characters

u independently shift each message character in a random manner

u to encrypt a plaintext of length n, use n uniformly random keys k1, . . . , kn

u “absolutely unbreakable”

u perfectly secure (when used correctly)

u based on message-symbol specific independently random shifts

38

The one-time pad (OTP) cipher

Fix n to be any positive integer; set M = C = K = {0,1}n

u Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
u Gen → {0,1}n

u Enc: given a key and a message of equal lengths, compute the bit-wise XOR
u Enc(k, m) = Enck(m) → k ⊕ m (i.e., mask the message with the key)

u Dec: compute the bit-wise XOR of the key and the ciphertext
u Dec(k, c) = Deck(c) := k ⊕ c

u Correctness
u trivially, k ⊕ c = k ⊕ k ⊕ m = 0 ⊕ m = m

39

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m1 and m2 and ciphertexts c, it holds that

Pr[EK(m1) = c] = Pr[EK(m2) = c],

where probabilities are measured over the possible keys chosen by Gen.

Proof

u events “EncK(m1) = c”, “m1 ⊕ K = c” and “K = m1 ⊕ c” are equal-probable
u K is chosen at random, irrespectively of m1 and m2, with probability 2-n

u thus, the ciphertext does not reveal anything about the plaintext

40

OTP characteristics

A “substitution” cipher

u encrypt an n-symbol m using n uniformly random “shift keys” k1, k2, . . . , kn

2 equivalent views

u K = M = C {0,1}n or G, (G,+) is a group

u “shift” method bit-wise XOR (m ⊕ k) addition/subtraction (m +/- k)

Perfect secrecy

u since each shift is random, every ciphertext is equally likely for any plaintext

Limitations (on efficiency)

u “shift keys” (1) are as long as messages & (2) can be used only once
41

view 1 view 2

Perfect, but impractical

Despite its perfect security, OTP has 2 notable weaknesses
u the key has to be as long as the plaintext

u limited applicability
u key-management problem

u the key cannot be reused (thus, the “one-time” pad)

u if reused, perfect security is not satisfied

u e.g., reusing a key once, leaks the XOR of two plaintext messages

u this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication
u securely distributing fresh long keys is as hard as securely exchanging messages…

42

Importance of OTP weaknesses

Inherent trade-off between efficiency/practicality Vs. perfect secrecy
u historically, OTP has been used efficiently & insecurely

u repeated use of one-time pads compromised
communications during the cold war

u NSA decrypted Soviet messages that
were transmitted in the 1940s

u that was possible because the Soviets
reused the keys in the one-time pad scheme

u modern approaches resemble OTP encryption

u efficiency via use of pseudorandom OTP keys

u “almost perfect” secrecy
43

3.4 Symmetric encryption,
revisited: OTP with
pseudorandomness

44

Big picture

Secret communication

u We learned what it means for a cipher to be perfectly secure

u We learned that the simple OTP cipher achieves this property

u XOR (mask) message (once) with the secret key (random pad)

u …but it cannot be used in practice!

u We learned how we can fix this problem

u just use OTP with a freshly-generated “random looking” pads

u mask each message once with a pseudorandom pad

45

Big picture (cont.)

Secret communication

u But there is no free lunch…

u if we mask each message once with a pseudorandom pad,
we must lose perfect secrecy!

u because “random looking” pads are not random…

u But not perfect won’t be imperfect – it will be close to perfect

u for all practical purposes

u “random looking” pads will be as random as truly random ones
u OTP + pseudo-randomness will be as secure as (standard) OTP

46

Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random

47

Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)

48

EncryptionPlaintext Ciphertext
… RESTUOKD … rrywytovty

key

state

STU
(block)(next block)

EncryptionPlaintext Ciphertext
OKD tty

key

3.5 Computational
security

49

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?

50

Now, what?

Our approach: Relax perfectness for cipher security

Initial model

u Perfect secrecy (or security) guarantees that

u the ciphertext leaks (absolutely) no extra information about the plaintext

u (unconditionally) to adversaries of unlimited computational power

Refined model

u Computational security guarantees a relaxed notion of security, namely that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power

52

Computational security

General concept in Cryptography

Computational security of a cryptographic scheme guarantees that

u (1) the scheme can be broken only with a tiny likelihood

u (2) by adversaries with bounded computational power

In contrast to perfect or information-theoretic or unconditional security

u which is typically harder, more costly or, often impossible, to achieve

53

Computational security (cont.)

General concept in Cryptography

u de facto model for security in most settings

u based on an underlying hardness (computational) assumption

u integral part of modern cryptography

u still allowing for rigorous mathematical proof of security

u Asymptotic description of results

“A scheme is computationally secure if
any efficient attacker succeeds in breaking it

with at most negligible probability”

54

Computational security (cont.)

General concept in Cryptography

u entails two relaxations

u security is guaranteed against efficient adversaries

u if an attacker invests in sufficiently large resources, it may break security

u goal: make required resources larger than those available to any realistic attacker!

u security is guaranteed in a probabilistic manner

u with some small probability, an attacker may break security

u goal: make attack probability sufficiently small so that it can be practically ignored!

55

Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount

u e.g., with prob. 2-128 (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128 (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)

56

Towards a rigorous definition of computational security

Concrete approach

u “A scheme is (t,ε)-secure if any attacker A, running for time at most t, succeeds in
breaking the scheme with probability at most ε”

Asymptotic approach

u “A scheme is secure if any efficient attacker A succeeds in breaking the scheme with
at most negligible probability”

57

Examples
u almost optimal security guarantees

u if key length n, the number of possible keys is 2n

u attacker running for time t succeeds w/ prob. at most ~ t/2n (brute-force attack)

u if n = 60, security is enough for attackers running a desktop computer

u 4 GHz (4x109 cycles/sec), checking all 260 keys require about 9 years

u if n = 80, a supercomputer would still need ~2 years

u today’s recommended security parameter is at least n = 128

u large difference between 280 and 2128; e.g., #seconds since Big Bang is ~258

u a once-in-100-years event corresponds to probability 2-30 of happening at a particular sec

u if within 1 year of computation attack is successful w/ prob. 1/260

then it is more likely that Alice and Bob are hit by lighting

58

Examples: Big Numbers in the real world

u Odds for all 5 numbers + Powerball

u 292x106 => 238

u The Age of the Universe in Seconds

u 4.3×1017 => 258

u # of cycles in a century of a 4 GHz CPU => 264

u # of arrangements of a Rubik's cube 4.3×1019 => 265

u Atoms in the Earth 1.33x1050 => 2166

u Electrons in the universe 1080 => 2266

59

3.6 Introduction to
modern cryptography

60

Cryptography / cryptology

u Etymology

u two parts: “crypto” + “graphy” / “logy”

u original meaning: κρυπτός + γράφω / λόγος (in Greek)

u English translation: secret + write / speech, logic

u meaning: secret writing / the study of secrets

u Historically developed/studied for secrecy in communications

u i.e., message encryption in the symmetric-key setting

u main application area: use by military and governments

61

Classical cryptography Vs. modern cryptography

antiquity – ~70s

u “the art or writing and solving codes”

u approach

u ad-hoc design
u trial & error methods
u empirically evaluated

~80s – today

u “the study of mathematical techniques
for securing digital information, systems,
and distributed computations again
adversarial attacks”

u approach
u systematic development & analysis
u formal notions of security / adversary
u rigorous proofs of security (or insecurity)

62

Example: Classical Vs. modern cryptography for encryption

antiquity – ~70s

“the art of writing and solving codes”

u ad-hoc study
u vulnerabilities/insecurity of

u Caesar's cipher

u shift cipher

u mono-alphabetic substitution cipher

~80s – today

“the study of mathematical techniques for
securing information, systems, and distributed
computations against adversarial attacks”

u rigorous study
u problem statement: secret communication over

insecure channel
u abstract solution concept: symmetric encryption,

Kerckhoff’s principle, perfect secrecy
u concrete solution & analysis: OTP cipher, proof of

security

63

Example: Differences of specific ciphers

Caesar’s/shift/mono-alphabetic cipher

u substitution ciphers
u Caesar's cipher

u shift is always 3

u shift cipher

u shift is unknown but
the same for all characters

u mono-alphabetic substitution/Vigènere cipher
u shift is unknown but

the same for all/many character occurrences

The one-time pad

u also, a substitution cipher
u shift is unknown and

independent for each character occurrence

64

Approach in modern cryptography

Formal treatment
u fundamental notions underlying the design & evaluation of crypto primitives

Systematic process
u A) formal definitions (what it means for a crypto primitive to be “secure”?)

u B) precise assumptions (which forms of attacks are allowed – and which aren’t?)

u C) provable security (why a candidate instantiation is indeed secure – or not)?

65

Recall: Secure against what?

u “Security” has no meaning per se…

u The security of a system, application, or protocol is always relative to

u A set of desired properties

u An adversary with specific capabilities

u Recall: Difficult to define general rules for security

u Adapt best practices, heuristics based on the system we are considering!

66

Example: Physical safes

67

TL-15 ($3,000)
15 minutes with
common tools

TL-30 ($4,500)
30 minutes with
common tools

TRTL-30 ($10,000)
30 minutes with

common tools and a
cutting torch

TXTL-60 (>$50,000)
60 minutes with
common tools, a

cutting torch, and up
to 4 oz of explosives

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

68

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

69

A) Formal definitions

abstract but rigorous description of security problem

u computing setting (to be considered)

u involved parties, communication model, core functionality

u underlying cryptographic scheme (to be designed)

u e.g., symmetric-key encryption scheme

u desired properties (to be achieved)

u security related

u non-security related

u e.g., correctness, efficiency, etc.

70

Why formal definitions are important?

u successful project management

u good design requires clear/specific security goals

u helps to avoid critical omissions or over engineering

u provable security

u rigorous evaluation requires a security definition

u helps to separate secure from insecure solutions

u qualitative analysis/modular design

u thorough comparison requires an exact reference

u helps to secure complex computing systems

71

Example: Problem at hand

abstract but rigorous description of security problem (to be solved)

72

secret communication

Insecure channel

Example: Formal definitions (1)

u computing setting (to be considered)

u e.g., involved parties, communication model, core functionality

73

Eve

BobAlice m

Alice, Bob, Eve

Alice wants to send a message m to Bob; Eve can eavesdrop sent messages

Alice/Bob may transform the transmitted/received message and share info

Example: Formal definitions (2)

u underlying cryptographic scheme (to be designed)

 symmetric-key encryption scheme

u Alice and Bob share and use a key k

u Alice encrypts plaintext m to ciphertext c and sends c instead of m

u Bob decrypts received c to get a message m’

74

Eve

Alice Bobm cencrypt

k k

decrypt mc

Example: Formal definitions (3)

u desired properties (to be achieved)

u security (informal)

u correctness (informal)

75

Eve

Alice Bobm cencrypt

k k

decrypt mc

Eve “cannot learn” m (from c)

If Alice encrypts m to c, then Bobs decrypts c to (the original message) m

Example: Probabilistic view of symmetric encryption

A symmetric-key encryption scheme is defined by

u a message space M, |M| > 1, and a triple (Gen, Enc, Dec)

u Gen: probabilistic key-generation algorithm, defines key space K

u Gen(1n) → k ∈ K (security parameter n)

u Enc: probabilistic encryption algorithm, defines ciphertext space C

u Enc: K × M → C , Enc(k, m) = Enck(m) → c ∈ C

u Dec: deterministic encryption algorithm

u Dec: K × C → M , Dec(k, c) = Deck(c) := m ∈M or ⊥

76

Example: Formal definitions (4)
Perfect correctness

u for any k ∈ K , m ∈ M and any ciphertext c output of Enck(m), it holds that

Pr[Deck (c) = m] = 1
Perfect security (or information-theoretic security)

u the adversary should be able to learn no additional information on m

77

Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!
random

experiment
DM → m
DK → k

Enck(m) → c

Example: Equivalent definitions of perfect security

1) a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

2) C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

78

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

|m0|=|m1|

From perfect to computational EAV-security

u perfect security: M, EncK(M) are independent

u absolutely no information is leaked about the plaintext

u to adversaries that unlimited computational power

u computational security: for all practical purposes, M, EncK(M) are independent

u a tiny amount of information is leaked about the plaintext (e.g., w/ prob. 2-60)

u to adversaries with bounded computational power (e.g., attacker invests 200ys)

u attacker’s best strategy remains ineffective

u random guess on secret key; or

u exhaustive search over key space (brute force attack)

79

Relaxing indistinguishability

Relax the definition of perfect secrecy – that is based on indistinguishability

u require that m0, m1 are chosen by a PPT adversary

u require that no PPT adversary can distinguish Enck(m0) from Enck(m1)

 non-negligibly better than guessing

80

3) indistinguishability

For every A, it holds that
Pr[b’ = b] = 1/2

AT m0, m1

DK → k
{0, 1} → b

Enck(mb) → cb

cb

b’

PPT

PPT

negl

+ negl |m0|=|m1|

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

81

B) Why precise assumptions are important?

u basis for proofs of security

u security holds under specific assumptions

u comparison among possible solutions

u relations among different assumptions

u stronger/weaker (i.e., less/more plausible to hold), “A implies B” or “A and B are equivalent”

u refutable Vs. non-refutable

u flexibility (in design & analysis)

u validation – to gain confidence or refute

u modularity – to choose among concrete schemes that satisfy the same assumptions

u characterization – to identify simplest/minimal/necessary assumptions
82

Example: Precise assumptions (1)

u adversary
u type of attacks – a.k.a. threat model

u capabilities (e.g., a priori knowledge, access to information, party corruptions)
u limitations (e.g., bounded memory, passive Vs. active)

83

Eve

Alice Bobm

eavesdropping

Eve may know the a priori distribution of messages sent by Alice

Eve doesn’t know/learn the secret k (shared by Alice and Bob)

cencrypt

k k

decrypt mc

Example: Precise assumptions (2)

u computational assumptions (about hardness of certain tasks)
u e.g., factoring of large composite numbers is hard

84

Eve

Alice Bobm

no computational assumptions
– a.k.a. perfect secrecy (or information-theoretic security)

cencrypt

k k

decrypt mc

Example: Precise assumptions (3)

u computing setting
u system set up, initial state, key distribution, randomness…

u means of communication (e.g., channels, rounds, messages…)
u timing assumptions (e.g., synchronicity, epochs, …)

85

Eve

Alice Bobm

key k is generated
randomly using
the uniform
distribution

cencrypt

k k

decrypt mc

key k is securely distributed to and securely stored at Alice and Bob

one message m is only communicated
(for simplicity in our initial security definition)

k, m are chosen independently

Possible eavesdropping attacks (I)
An attacker may possess a

u (a) collection of ciphertexts
u ciphertext only attack

u this will be the default attack type
when we will next define the
concept of perfect security

86

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

(a)

Possible eavesdropping attacks (II)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

87

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

plaintext ciphertext

key

(b)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (III)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

88

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

(c)

Eve

Encryption
Algorithm

Possible eavesdropping attacks (IV)
An attacker may possess a

u (a) collection of ciphertexts

u ciphertext only attack

u (b) collection of plaintext/ciphertext pairs

u known plaintext attack

u (c) collection of plaintext/ciphertext pairs
 for plaintexts selected by the attacker

u chosen plaintext attack

u (d) collection of plaintext/ciphertext pairs
 for (plaintexts and) ciphertexts selected
 by the attacker

u chosen ciphertext attack

89

IJCGA, CAN DO
HIFFA GOT
TIME.

plaintext ciphertext

key

001101
110111

(d)

Eve

Decryption
Algorithm

Main security properties against eavesdropping
“plain” security

u protects against ciphertext-only attacks

u EAV-attack

“advanced” security

u protects against chosen plaintext attacks

u CPA-attack

90

Hi, Bob.
Don’t invite

Eve to the
party!

Love, Alice

Encryption
Algorithm

plaintext ciphertext

key

Eve

ciphertext
ABCDEFG

HIJKLMNO
PQRSTUV

WXYZ.

plaintext

key

Eve

Encryption
Algorithm

ATΠ

Game-based computational EAV-security

91

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational EAV-security

92

m0, m1

Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is EAV-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

Alternatively:
“is semantically secure”

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing

ATΠ

Game-based computational CPA-security

93

m0, m1Gen(1n) → k
{0, 1} → b

Enck(mb) → cb

cb

b’

encryption scheme Π = {M, (Gen, Enc, Dec)}

chooses m0,m1
s.t. |m0|=|m1|

We say that (Enc,Dec) is CPA-secure if any PPT adversary A guesses b correctly with
probability at most 0.5 + ε(n), where ε is a negligible function

mi

ci
Enc(k,)

I.e., no PPT A computes b correctly non-negligibly better than randomly guessing,
even when it learns the encryptions of messages of its choice

On CPA security

Facts

u Any encryption scheme that is CPA-secure is also CPA-secure for multiple encryptions

u CPA security implies probabilistic encryption – can you see why?

u EAV-security for multiple messages implies probabilistic encryption

94

The 3 pillars in Cryptography

u We have already been familiar with:

u A) formal definitions

u B) precise assumptions

u C) provable security

u Let’s remind ourselves…

95

C) Provably security

Security

u subject to certain assumptions, a scheme is proved to be secure according to a
specific definition, against a specific adversary

u in practice the scheme may break if

u some assumptions do not hold or the attacker is more powerful

Insecurity

u a scheme is proved to be insecure with respect to a specific definition

u it suffices to find a counterexample attack

96

Why provable security is important?

Typical performance

u in some areas of computer science
formal proofs may not be essential
u simulate hard-to-analyze algorithm to

experimentally study
its performance on “typical” inputs

u in practice, typical/average case occurs

Worst case performance

u in cryptography and secure protocol design
formal proofs are essential

u “experimental” security analysis is not possible

u the notion of a “typical” adversary makes little
sense and is unrealistic

u in practice, worst case attacks will occur
u an adversary will use any means

in its power to break a scheme

97

